Simulation of Richtmyer-Meshkov Instability, using the SPPM Code on the IBM SST System

Collaborators: Ron Cohen, Bruce Curtis, Bill Dannevik, Andris Dimits, Don Eliason, Art Mirin, Tom Peyser, Oleg Schilling

Postprocessing assistance: Mark Duchaineau, Dan Schikore, David Porter

SPPM co-authors: Steve Anderson and Paul Woodward

Progression of Simulation Size With ASCI Platform Evolution

Date	Number of Gridpoints	Number of Processors	Sustained Throughput
4Q96	0.13 B	128	0.003 Tf
2Q97	1.10 B	512	0.013 Tf
4Q98	8.10 B	3840	0.50 Tf
4Q98	24.50 B	5832	1.20 Tf
4Q98	70.00 B	5832	

Under-Resolved Hydrodynamics Will Be an *Enduring* Problem

- strong turbulence stimulates a wide range of space- and time-scales (N_d ~ O(R ³)) *
- in 25 years, we've progressed from R ~ 30 to R ~
 900; our problems involve R > 10⁶
- full resolution of strong turbulence would require an O(10⁷)-O(10⁹) fold increase in computing capability (about 20-45 years *at recent rates*)
- 3-dimensional large-eddy simulation will be the tool of choice

* R is the *microscale* Reynolds number; R ~ O(Re ^{1/2})

RM Mixing Can Be Explored via Shock Tube Experiments

RM Multiple Shock Simulations (earlier experiments)

Mixed Layer Growth in Double-Shocked RM Simulation

Simulation Concept

- in collaboration with A-Division
- mimics Caltech shock-tube experiment conditions with potential for multiple shocks
- highest "feasible" resolution, about 2048³ zones (grind time, not memory, is the limiting factor)
- initial conditions contain (1) single-mode long- wavelength and
 (2) multiple short-wavelength perturbations

SPPM Code

- Simplified Piecewise Parabolic Method (Colella and Woodward)
 - Godunov method
 - Lagrangian plus remap (effectively Eulerian)
- Three-dimensional domain decomposition
- Posix threads plus MPI
- Fortran 77
- 32-bit arithmetic

The SPPM Simulation on the IBM SST System

- 960 nodes of IBM SST
- 2048 X 2048 X 1920 mesh
- 8 X 8 X 15 domain decomposition
- 256 X 256 X 128 local mesh
- 27,000 timesteps
- 173 hours of full machine time, spread over 226 wall clock hours
- 129 MFlops (sustained) per processor
- 494 GFlops sustained throughput

Output Procedures and Statistics

- Restart dumps
 - 960 nodes X 196 MB = 188 GB
 - backup copy on neighboring node
- Bob dumps (movie frames)
 - 274 frames X 960 nodes X 8.4 MB = 2,210 GB
 - 10:1 compression results in 221 GB
- Compressed data dumps (16-bit integer)
 - 10 dumps X 960 nodes X 84 MB = 806 GB
- 275,000 files to store
- Data flow: local disk, to GPFS, to Riptide, to FAST storage

Expected Impact

- explores nonlinear interactions between short and long wavelength energy transfer and resulting effects on mixing
- largest calculation of its type
- high resolution allows capture of fine-scale physics, e.g., possible multiple transitions from coherent to turbulent states with increasing Reynolds number
- elucidates vital differences between 3-D and 2-D turbulence
- simulation diagnostics will provide tests of sub-grid scale parameterization model performance

Advanced Diagnostics Will Provide Important SGS Model Performance Tests

Next Steps

- simulation must be extended through second-shock event and subsequent mixing processes
- post-processing diagnostics tools must be extended to full-size dataset capability
- new laboratory experiments will likely be defined to facilitate verification and validation of simulation and to further test SGS model performance